# Baylor College of Medicine

## Vaccination by Homologous Antigenic Loading as Adjuvant Therapy for Glioblastoma: **Correlation of Immune Response and Early Efficacy Signal with Vaccine Cell Gene Signature** Georges JF<sup>1,2</sup>, Esquenazi-Levy Y<sup>3</sup>, Zhu J-J<sup>3</sup>, Hsu S<sup>3</sup>, Schumann EH<sup>3</sup>, Vu M<sup>3</sup>, Zvavanjanja RC<sup>4</sup>, Trivedi A<sup>5</sup>, Liu W<sup>5</sup>, Namekar M<sup>5</sup>, Hofferek CJ<sup>5</sup>, Ernste KJ<sup>5</sup>, Mossop CM<sup>2</sup>, Clay CM<sup>6</sup>, Goralczyk A<sup>6</sup>, Amin S<sup>7</sup>, Colman L<sup>2</sup>, Kohler LS<sup>2</sup>, Cao TV<sup>2</sup>, Okereke N<sup>2</sup>, Musher BL<sup>8,9</sup>, Ravi V<sup>10</sup>, Kemnade JO<sup>11</sup>, Tandon N<sup>3</sup>, Turtz A<sup>2,6</sup>, Aguilar LK<sup>12</sup>, Konduri V<sup>5,9</sup>, Decker WK<sup>5,9,13</sup>

Department of Neurosurgery, 8 MD Anderson Cancer Center at Cooper, 7 Division of Interventional Radiology, Cooper University Health, Camden, NJ 08103; 3 Vivian L. Smith Department of Neurosurgery, 8 MD Anderson Cancer Center at Cooper, 7 Division of Interventional Radiology, Cooper University Health, Camden, NJ 08103; 3 Vivian L. Smith Department of Neurosurgery, 8 MD Anderson Cancer Center at Cooper, 7 Division of Interventional Radiology, Cooper University Health, Camden, NJ 08103; 3 Vivian L. Smith Department of Neurosurgery, 8 MD Anderson Cancer Center at Cooper, 7 Division of Interventional Radiology, Cooper University Health, Camden, NJ 08103; 3 Vivian L. Smith Department of Neurosurgery, 8 MD Anderson Cancer Center at Cooper, 7 Division of Interventional Radiology, Cooper University Health, Camden, NJ 08103; 3 Vivian L. Smith Department of Neurosurgery, 8 MD Anderson Cancer Center at Cooper, 7 Division of Interventional Radiology, Cooper University Health, Camden, NJ 08103; 3 Vivian L. Smith Department of Neurosurgery, 8 MD Anderson Cancer Center at Cooper, 7 Division of Interventional Radiology, Cooper University Health, Camden, NJ 08103; 3 Vivian L. Smith Department of Neurosurgery, 8 MD Anderson Cancer Center at Cooper, 7 Division of Interventional Radiology, Cooper University Health, Camden, NJ 08103; 3 Vivian L. Smith Department of Neurosurgery, 8 MD Anderson Cancer Center at Cooper, 7 Division of Interventional Radiology, Cooper, 7 Division of Interventional Radiology, 8 MD Anderson Center at Cooper, 7 Division of Interventional Radiology, 8 MD Anderson Center at Cooper, 7 Division of Interventional Radiology, 8 MD Anderson Center at Cooper, 7 Division of Interventional Radiology, 8 MD Anderson Center at Cooper, 7 Division of Interventional Radiology, 8 MD Anderson Center at Cooper, 7 Division of Interventional Radiology, 8 MD Anderson Center at Cooper, 7 Division of Interventional Radiology, 8 MD Anderson Center at Cooper, 7 Division of Interventional Radiology, 8 MD Anderson Center at Cooper, 7 D University of Texas Health Science Center, Houston, TX 77030; <sup>5</sup>Department of Pathology & Oncology, <sup>9</sup>Dan L. Duncan Comprehensive Cancer Center, 1<sup>3</sup>Center for Cell and Gene Therapy, Baylor College of Medicine, Houston, TX 77030; <sup>10</sup>The University of Texas M.D. Anderson Cancer Center, Department of Sarcoma Medical Oncology, Houston, Texas 77030; <sup>11</sup>University of Alabama Birmingham College of Medicine, Birmingham AL 35233; <sup>12</sup>Diakonos Oncology Corporation, Houston, TX 77058

## ABSTRACT

tumor of the CNS with median survival of 14-18 months despite aggressive immunotherapy approaches have previously shown promise in GBM inconclusive results. Dendritic cell (DC) homologous antigenic loading is a technology that leverages p38MAPK and mTORC1 signaling cascades to initiate powerful cDC1-like skewing of monocyte-derived DC, leading to downstream induction of tissue-infiltrating, cytolytic effector memory T-cells.

evaluated the autologous cell-based vaccine DOC1021 prepared through DC homologous antigenic loading with autologous tumor lysate and amplified tumor mRNA and admin deep cervical lymph node chains. Three courses of vaccine were administered every two weeks after c chemoradiation, adjuvanted contemporaneously with weekly alpha interferon. Four dose 3.6x10<sup>7</sup> total vaccine cells were tested. Patient immune responses were evaluated by flow cytometry of peripheral blood and, in three patients, by spatial transcriptomics. Vaccine cell preparations were analyzed by mRNAseg of vaccine and autologous control cells loaded only with tumor mRNA but not lysate

Sixteen newly diagnosed patients completed treatment, median age 63 years, 38% subtotal resection and 94% (15/16) MGMT unmethylated. The most common related AEs were grade 1 injection-site reactions and grade 1-2 fatigue and urticaria. No SAEs nor DLTs were observed. IHC analysis of tumor derived from post-vaccination second resections showed enhanced CD8<sup>+</sup> T-cell infiltration and pathology consistent with residual rather than relapsed GBM in 2/3 patients (not shown). Analysis of post-vaccination PBMC indicated expansion of CD4+ (13/13) and CD8<sup>+</sup> (11/13) central memory T-cell compartments (\*\*\*\*p<0.00006 and expansion of CD8+CD127+ MPECs (12/13; \*\*\*p<0.002). Augmentation of peripheral immune response was strongly outcomes correlated with postvaccination upregulation of CD141. IL-6. IL-36B. and IL  $12R\alpha$  and downregulation of IL-1 $\alpha$  and TGF- $\beta$ . Treg infiltration into postvaccination tumor bed was not observe Cancer-specific median OS of this 15/16 MGMT unmethylated cohort is estimated by Kaplan-Meier analysis to be 19.7 months after 16.0 months median follow-up

results indicate that DOC1021 is safe, can be effectively integrated within existing standards of care and appears efficacious in a challenging patient population. Strong correlations between vaccine genetic signature and peripheral immune responses were also observed.

### HOMOLOGOUS ANTIGENIC LOADING

- Defined as the loading dendritic cell MHC class I and MHC class II with epitopes of amino overlapping acid sequence homology
- Is recognized by elements of innate immunity pathogenimportant associated molecular pattern (PAMP) associated with viral infection
- Detected by the multiaminoacyl tRNA synthetase (mARS) com-plex which information transmits the through conformational change that releases the AIMp1 signaling intermediate.
- signals through p38MAPK and mTORC. resulting in altered AP-1 heterodimer composition and.

ultimately the specificity of downstream target gene expression.

Genetic changes that result from homologous antigenic loading generate a cell type with a cDC1-like phenotype, enabling the priming of robust CD8<sup>+</sup> T-cell responses with an enhanced cytolytic and memory characteristics coupled with a reduced capacity for exhaustion.

• A cell-based vaccine employing homologous antigenic loading might serve as a powerful, personalized vaccine platform through which to generate durable antitumor responses. MHC class I antigens were delivered ex vivo to patient DC through electroporation of amplified autologous tumor mRNA whereas MHC class II antigens were delivered by subsequent DC incubation with autologous tumor lysate.



| Prior to<br>Enrollment  | Obtain informed consent.<br>and            |
|-------------------------|--------------------------------------------|
|                         |                                            |
| Visit 1<br>Time Point   | Undergo surgery, collect su<br>Apheresis o |
|                         |                                            |
| Visit 2<br>Time Point   | Complete<br>Manufacture vacci              |
|                         |                                            |
| Visit 3<br>Time Point   | Administe                                  |
|                         |                                            |
| Visit 4&5<br>Time Point | Repeat vaccination an                      |
|                         |                                            |
| Visit 6<br>Time Point   | Adjuvant phase cheme                       |
|                         |                                            |

| ENKULLED SUBJECTS    |                    |           |                 |        |                     |                   |                     |                     |                      |                                  |  |  |
|----------------------|--------------------|-----------|-----------------|--------|---------------------|-------------------|---------------------|---------------------|----------------------|----------------------------------|--|--|
| Dose Level<br>Cohort | Study ID           | Race      | Ethnicity       | Gender | Age at<br>Diagnosis | Resection<br>Type | MGMTp<br>Status     | Newly-<br>Diagnosed | Survival<br>(Months) | October 18<br>Survival<br>Status |  |  |
| DL1 3.5e6            | GBM-MDAC-<br>0001  | Caucasian | NOT<br>Hispanic | Female | 66                  | Gross total       | Unmethylated        | Yes                 | 23.8                 | Deceased                         |  |  |
|                      | GBM-MDAC-<br>0003  | Caucasian | NOT<br>Hispanic | Female | 64                  | Subtotal          | Unmethylated        | Yes                 | 17.2                 | Deceased                         |  |  |
|                      | GBM-MDAC-<br>0006  | Caucasian | NOT<br>Hispanic | Male   | 73                  | Gross total       | Unmethylated        | Yes                 | 26.4→                | Alive                            |  |  |
|                      | GBM-UT-<br>0008*   | Caucasian | NOT<br>Hispanic | Female | 47                  | Subtotal          | Unmethylated        | No                  | 10.0                 | Deceased                         |  |  |
| DL2 7.0e6            | GBM-UT-<br>0011    | Caucasian | NOT<br>Hispanic | Male   | 58                  | Gross total       | Unmethylated        | Yes                 | 19.7                 | Deceased                         |  |  |
|                      | GBM-UT-<br>0012    | Caucasian | Not<br>Reported | Female | 67                  | Gross total       | Unmethylated        | Yes                 | 14.9                 | Deceased                         |  |  |
|                      | GBM-MDAC-<br>0014  | Caucasian | NOT<br>Hispanic | Female | 64                  | Subtotal          | Methylated<br>(81%) | Yes                 | 19.6→                | Alive                            |  |  |
|                      | GBM-UT-<br>0015    | Caucasian | NOT<br>Hispanic | Male   | 58                  | Gross total       | Unmethylated        | Yes                 | 17.4                 | Deceased                         |  |  |
| DL3 1.4e7            | GBM-UT-<br>0017    | Asian     | NOT<br>Hispanic | Female | 63                  | Subtotal          | Unmethylated        | Yes                 | 9.7                  | Deceased                         |  |  |
|                      | GBM-UT-<br>0018    | Caucasian | NOT<br>Hispanic | Female | 59                  | Gross total       | Unmethylated        | Yes                 | 17.6→                | Alive                            |  |  |
|                      | GBM-UT-<br>0019    | Caucasian | NOT<br>Hispanic | Male   | 63                  | Gross total       | Unmethylated        | Yes                 | 12.9                 | Deceased                         |  |  |
|                      | GBM-UT-<br>0021    | Caucasian | Hispanic        | Male   | 51                  | Gross total       | Unmethylated        | Yes                 | 16.5→                | Alive                            |  |  |
|                      | GBM-UT-<br>0022    | Caucasian | NOT<br>Hispanic | Male   | 59                  | Gross total       | Unmethylated        | Yes                 | 14.4                 | Deceased                         |  |  |
| DL4 3.6e7            | GBM-UT-<br>0023    | Caucasian | NOT<br>Hispanic | Male   | 54                  | Gross total       | Unmethylated        | Yes                 | 15.5→                | Alive                            |  |  |
|                      | GBM-UT-<br>0024    | Asian     | NOT<br>Hispanic | Female | 58                  | Gross total       | Unmethylated        | Yes                 | 15.3→                | Alive                            |  |  |
|                      | GBM-UT-<br>0025    | Caucasian | NOT<br>Hispanic | Female | 73                  | Gross total       | Unmethylated        | Yes                 | 15.2→                | Alive                            |  |  |
|                      | GBM-MDAC-<br>0027* | Caucasian | NOT<br>Hispanic | Female | 66                  | Subtotal          | Unmethylated        | No                  | 11.6→                | Alive                            |  |  |
|                      | GBM-UT-<br>0028    | Caucasian | NOT<br>Hispanic | Male   | 65                  | Subtotal          | Unmethylated        | Yes                 | 8.7                  | Deceased                         |  |  |

PATHOLOGY & IMMUNOLOGY





### DAN L DUNCAN COMPREHENSIVE CANCER CENTER





Making Cancer History®

## **Cooper** inspira NEUROSCIENCE



Oncology